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Automatic Contrast Enhancement Technology
With Saliency Preservation
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Abstract— In this paper, we investigate the problem of image
contrast enhancement. Most existing relevant technologies often
suffer from the drawback of excessive enhancement, thereby
introducing noise/artifacts and changing visual attention regions.
One frequently used solution is manual parameter tuning, which
is, however, impractical for most applications since it is labor
intensive and time consuming. In this research, we find that
saliency preservation can help produce appropriately enhanced
images, i.e., improved contrast without annoying artifacts.
We therefore design an automatic contrast enhancement
technology with a complete histogram modification framework
and an automatic parameter selector. This framework combines
the original image, its histogram equalized product, and
its visually pleasing version created by a sigmoid transfer
function that was developed in our recent work. Then, a visual
quality judging criterion is developed based on the concept of
saliency preservation, which assists the automatic parameters
selection, and finally properly enhanced image can be generated
accordingly. We test the proposed scheme on Kodak and
Video Quality Experts Group databases, and compare with the
classical histogram equalization technique and its variations as
well as state-of-the-art contrast enhancement approaches. The
experimental results demonstrate that our technique has superior
saliency preservation ability and outstanding enhancement effect.

Index Terms— Contrast enhancement, histogram modification
framework (HMF), quality assessment (QA), saliency
preservation, sigmoid transfer mapping.

I. INTRODUCTION

DUE to user’s operational error, poor illumination
condition, and unideal device functionality, a raw image

can sometimes have limited contrast and low visual quality.
To solve the problem, various postprocessing algorithms
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Fig. 1. Flowchart of the proposed RICE contrast enhancement algorithm.
hi, heq, and hsig separately represent the histograms of the input image, and
associated HE and STBP processed versions.

have been proposed, such as contrast enhancement, white
balance adjustment, dynamic range expansion, and edge
sharpening or high boosting. Contrast enhancement is usually
a preferable option because it aims at directly improving the
image contrast, and thereby enhancing users’ experiences.

Contrast enhancement has been an important research topic
in image processing and computer vision for a long history.
Generally speaking, contrast enhancement targets to generate
a perceptually more pleasing or visually more informative
image or both. By judiciously reassigning pixel values in an
image, the contrast can be drastically improved, as practiced
by histogram equalization (HE) [1]. The fundamental
objective of HE is to maximize the entropy of the image
histogram, so as to reveal image details as much as possible.
Owing to its simplicity and quickness, HE has nowadays been
widely used in many image postprocessing systems and is the
de facto synonym for contrast enhancement. However, HE is
often questioned for excessive enhancement that can cause
serious visible deterioration, such as contouring or ringing.
Researchers now tend to agree that HE is far from the ideal
contrast enhancement technology, and many attempted to
improve HE for better performance.

An important type of solutions to overcome the drawback
of overenhancement of HE is to preserve the input image
brightness when using HE. Early methods, such as brightness
preserving bi-HE (BBHE) [2] and dualistic subimage
HE (DSIHE) [3], decompose the input image histogram
into dualistic subhistograms, and then apply HE in each
subhistogram. Their major difference is that the decomposition
step of BBHE relies on mean image brightness, while DSIHE
uses median value. Recursive mean-separate HE [4] and
recursive subimage HE (RSIHE) [5] adopt similar recursive
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Fig. 2. Sigmoid curves with four different α4 values.

operations to improve BBHE and DSIHE, to maintain the
brightness better. Another example is weighted thresholded
HE (WTHE) [6], which modifies image histogram by
weighting and thresholding before HE. Thereafter, the concept
of dynamic range was introduced into contrast enhancement
in [7] and [8] using HE in every subhistogram toward a
new dynamic range. Ibrahim and Kong [9], [10] proposed
two algorithms for enhancing gray and color images with a
normalization stage to keep the original brightness. Recently,
a modified Laplacian pyramid framework was proposed to
partition the input image into bandpass images, followed by a
novel robust HE for global contrast enhancement with noise
control and local information preservation [11].

Another direction to improve HE is to pose contrast
enhancement as an optimization problem that can be solved by
minimizing a cost function. Lai et al. [12] adopted a quality
measure based preprocessing step to reassign the probability
distribution. Then, they applied an improved plateau HE to
adaptive contrast enhancement in terms of the regulated prob-
ability distribution function. In [13], a histogram modification
framework (HMF) was designed in two steps: first, to search
for an intermediate histogram h between the input histogram
hi and the uniform histogram u by minimizing a weighted
distance ||h − hi || + λ||h − u||; second, to perform HE of h.
The HMF is able to indirectly restrain undesirable side effects
of HE via the proper selection of the Lagrangian multiplier λ.

Other contrast enhancement methods, similar
to [12] and [13], were proposed with optimization processes
as well. Majumder and Irani [14] improved the local image
contrast by controlling the local gradient with a single
parameter. Without segmentation, this method tends to
maximize the average local contrast of the input image
strictly subject to a Weber Law-induced perceptual constraint.
Finally, the optimal contrast-tone mapping (OCTM) was
designed using linear programming to solve an optimization
problem posed by a formal definition of image contrast and
tone distortion [15]. OCTM has succeeded in seeking the
compromise of two conflicting quality criteria (tone subtlety
and contrast enhancement), which was overlooked in previous
work, and it permits users to add and fine tune the constraints
to obtain desirable visual effects.

Despite of the surge of contrast enhancement approaches,
the automatic quality judging or parameter selection criterion

Fig. 3. Matthew sculpture (skewness: −0.62) and its processed version
(skewness: −0.13) using the proposed sigmoid transfer mapping. (a) Original
sculpture. (b) Processed sculpture.

is rarely seen. As a consequence, overenhancement and
underenhancement are still a big challenge for most existing
technologies, such as [2]–[6]. To obtain better results, people
have to resort to manual parameter tuning, which is often a
labor intensive and time-consuming job. We, in this paper,
focus on addressing the mentioned difficulty. It is believed
that a good contrast enhancement algorithm should highlight
indiscernible image details and suppress visual artifacts
simultaneously. In our research, we noticed that image
saliency is sensitive to noise injection whereas immune to
contrast enhancement. Therefore, it is reasonable to use
saliency preservation as an effective judging criterion to
ensure a properly enhanced image. On this base, we propose
an automatic robust image contrast enhancement (RICE)
model with saliency preservation.

In the design of RICE, it is assumed that the ideal histogram
of an appropriately enhanced image should be: 1) close to
the uniformly distributed histogram to enhance image infor-
mativeness; 2) keeping its 2-norm distance from the original
image histogram small to reduce the visual deterioration; and
3) of positively skewed statistics to improve the surface qual-
ity [16], e.g., using the recently proposed S-shaped transfer
function based brightness preserving (STBP) algorithm [17].
To comprehensively meet the three requirements above, an
optimization problem is formulated using the sum of weighted
histograms of the input image, and its HE and STBP processed
ones. Then, a criterion for parameter selection is established
by the idea of saliency preservation, which is measured by a
quality assessment (QA) metric of contrast (dubbed as QMC)
using the image signature model for saliency detection [18].

The rest of this paper is organized as follows. Section II first
describes the proposed RICE algorithm. We conduct RICE,
and classical and state-of-the-art contrast enhancement
approaches on Kodak database [19] in Section III, and the
experimental results confirm that RICE works better than
the competing methods. In Section IV, an extension of the
proposed RICE to video enhancement is given. Section V
concludes this paper.

II. AUTOMATIC ENHANCEMENT TECHNOLOGY

The proposed algorithm works in two stages: 1) to
pose the cost function regarding the ideal histogram and
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Fig. 4. (a1) Natural image red door in the Kodak database. (b1) Output of HE. (c1) Output of STBP. (d1)–(f1) Outputs of (8) and (9) with {φ,ψ} =
{1e − 4, 0.02}, {1e − 4, 0.2}, and {1e − 3, 0.2}. (a2)–(f2) Saliency maps of (a1)–(f1) using (10)–(12).

2) to automatically obtain the ideal histogram following the
instruction of QMC, and then enhance image contrast by
histogram matching. We show the flowchart of RICE in Fig. 1
for easy understanding of the proposed framework.

A. Ideal Histogram for Contrast Enhancement

In earlier studies, researchers seek to fully exploit the
available dynamic range for contrast enhancement. HE is
such a classical method that aims at generating a uniformly
distributed histogram with a cumulated histogram as its
mapping function. HE can increase image informativeness,
and sometimes produce output images with fairly well result.
However, HE also suffers from many criticisms, because
it tends to easily cause visible deterioration due to
overenhancement. As a consequence, various improved
HE-type of methods have been proposed up to date. These
approaches, however, do not always guarantee satisfactory
outputs. In this paper, we define a general HMF inspired by
a recent work in [13].

For an input image Ii , we first denote by hi the histogram
of Ii and by hu a uniformly distributed histogram. We then
pose a bicriteria optimization problem based on the
supposition that the target histogram h̃ should be closer to
hu as required by the task of enhancement, but also keep
the distance h̃ − hi small as a fidelity constraint. That is
to say, the goal histogram is expected to be more visually
informative yet with minimum perceptual deterioration.
In practice, we find that hu is not a good choice since most

image histograms cannot be distributed uniformly after HE on
account of various kinds of image scenes. This inspires us to
replace hu with the equalized histogram heq that is computed
from hi using HE. We therefore formulate the optimization
problem as a weighted sum of the following two objectives:

h̃ = arg min
h

‖h − hi‖ + φ‖h − heq‖ (1)

where h̃, h, hi, heq ∈ R256×1, and φ is a control parameter
varying over [0,∞). Note that the solution of (1) finds the
optimal tradeoff between two histograms of the original
image and its histogram equalized version. The standard HE
can be acquired as φ goes to infinity, while (1) converges to
the input image when φ is close to zero.

It is easy to find that (1) does not involve any perceptual
quality related term. In [17], a properly defined sigmoid
transfer function was shown to produce perceptually pleasing
images, resulting in substantial visual quality improvement.
More precisely, we use a four-parameter logistic function to
define the sigmoid transfer mapping Tsig(·) and its associated
enhanced image Isig as

Isig = Tsig(Ii ,π) = π1 − π2

1 + exp
(
− (Ii −π3)

π4

) + π2 (2)

where π = {π1, π2, π3, π4} are free parameters required to be
solved. We assume that the transfer curve passes four points
(βi , αi ), i = {1, 2, 3, 4}. Motoyoshi et al. [16] found that an
image of a long positive tail in histogram (namely a positively
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TABLE I

PERFORMANCE MEASURES (SROCC) AND COMPUTATIONAL LOAD

(AVERAGE RUN TIME) OF STATE-OF-THE-ART FR FSIM, GSIM,

AND IGM, AND RR FEDM, SDM, RIQMC, AND THE PROPOSED

RR QMC. WE BOLD THE METRIC WITH THE BEST

PERFORMANCE AND THE LEAST

COMPUTATIONAL TIME

TABLE II

PERFORMANCE EVALUATIONS (SROCC) OF THE TESTING QA METRICS

ON EACH PRISTINE IMAGE AND CORRESPONDING CONTRAST-

CHANGE IMAGES. WE EMPHASIZE THE BEST PERFORMED

METRIC AND LABEL THE LOWEST SCORE WITH

BRACKETS FOR EACH QA METRIC

skewed statistics) always tends to appear darker and glossier
and has better surface quality than a similar image with lower
skewness. Furthermore, the authors also provided a possible
neural mechanism in human brains, which includes ON-center
and OFF-center cells and an accelerating nonlinearity to
compute the subband skewness. This motivates the usage of
the sigmoid mapping for advancing surface quality, which is
rolling symmetry with respect to the straight line y = x . We fix
seven parameters: (β1, α1) = (0, 0), (β2, α2) = (255, 255),
(β3, α3) = (x, y), where x = y = �mean(Ii )/32� ∗ 32,
β4 = 25, and let α4 to be the unique free parameter. We then
search for the optimal control parameters π = {π1, π2, π3, π4}
by minimizing the following objective function:

πopt = arg min
π

4∑
i=1

|αi − Tsig(βi ,π)|. (3)

With the known parameters πopt, we can finally get

Isig = max(min(Tsig(Ii ,πopt), 255), 0) (4)

where max and min operations are used to limit Isig’s pixel
values in the bound of 0–255. Note that α4 is the only control

Fig. 5. Scatter plot of MOS versus the proposed QMC on the overall
CID2013 database.

parameter to alter curvature of the transfer function. In this
paper, we set α4 = 12. To visualize the sigmoid curve, we plot
four exemplary curves with the same (β3, α3) = (128, 128)
but different α4 in Fig. 2.

The proposed sigmoid transfer mapping is used to process
the Matthew sculpture image, as shown in Fig. 3, and this
clearly increases the surface quality in comparison to the
original counterpart. Furthermore, we present a classical
natural image red door as well as its histogram equalized and
sigmoid curve transferred versions in Fig. 4(a1), (b1), and (c1).
We can readily find that the sigmoid mapping produces
perceptually pleasing images (c1) with respect to the other
two (a1) and (b1). It is natural to combine the histogram
hsig that is computed from Isig into (1), thus making the
optimization objective function more complete

h̃ = arg min
h

‖h − hi‖ + φ‖h − heq‖ + ψ‖h − hsig‖ (5)

where hsig ∈ R256×1, and ψ is the second control parameter
similar to φ. Note that, with different choices of {φ,ψ}, the
solution of (5) will create the original input image, or its
histogram equalized output, or the sigmoid transferred copy.
Of course, a proper selection of {φ,ψ} will lead to the best
tradeoff and generate optimally enhanced images.

To simplify the optimization equation stated above, we use
the squared sum of the Euclidean norm to obtain an analytical
solution to (5)

h̃ = arg min
h

‖h − hi‖2
2 + φ‖h − heq‖2

2 + ψ‖h − hsig‖2
2

(6)

which results in the quadratic optimization problem

h̃ = arg min
h

[
(h − hi)

T (h − hi)+ φ(h − heq)
T (h − heq)

+ ψ(h − hsig)
T (h − hsig)

]
. (7)

By derivation, we can derive the solution of (7) as

h̃ = hi + φheq + ψhsig

1 + φ + ψ
. (8)

Given h̃, the histogram matching function Thm(·) given
in [13] is used to produce the enhanced image

Ĩ = Thm(Ii , h̃(φ,ψ)). (9)
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Fig. 6. Natural image Portland Head Light in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output
of RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

Fig. 7. Natural image Shuttered windows in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output of
RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

We choose three couples of representative {φ,ψ} (= {1e − 4,
0.02}, {1e − 4, 0.2}, {1e − 3, 0.2}), and illustrate the three
enhanced images in Fig. 4(d1), (e1), and (f1). As expected, the
enhanced output, as an optimal tradeoff between minimized
perceptual deterioration and maximized visual informativeness
and perceptual pleasure, achieves considerable improvement in
terms of visual quality.

B. Automatic Realization of Ideal Histogram

The major shortage of most existing contrast enhancement
technologies is overenhancement or underenhancement, which
introduces unpleasant noise and deteriorates users’ experience.
In most cases, manual parameter tuning is used for proper
enhancement. This method, however, largely reduces the
applicability since it is a quite labor intensive and time-
consuming job that is impractical for real-time systems. It is

usually required that a good contrast enhancement approach
should help to reveal indiscernible image details without
introducing noticeable distortions. However, most existing
QA metrics are not applicable to the contrast enhanced
images [20]–[25], because the newly revealed image details
and the newly introduced visual distortions are often difficult
to tell apart.

In this paper, we find that the proper contrast enhancement
generally reveals indiscernible image details while keeping
the image saliency unchanged [Fig. 4(c2)–(f2)], whereas poor
enhancement creates artifacts and thus alters visual saliency
profile, as shown in Fig. 4(b2).1 This phenomenon might be
easily justified because: 1) the artifacts caused by contrast
enhancement are extremely incoherent with its surroundings,

1Of course, this finding is not applicable to those images without prominent
salient points.
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Fig. 8. Natural image Two macaws in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output of
RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

Fig. 9. Natural image Couple on beach in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output of
RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

thereby changing saliency distribution and 2) the subtle
details highlighted by contrast enhancement also exist in the
original image, thus do not change the saliency distribution.
Accordingly, saliency preservation can be used as an optimal
rule for fine tuning the performance of contrast enhancement
algorithms.

The tool of visual saliency has been successfully
applied in various kinds of research topics, e.g.,
QA metrics [26]–[28] and video compression [29], [30].
Hayes et al. [31] and Oppenheim and Lim [32] pointed out that
more high-frequency information are stored in the residual.
Hou and Zhang [33] follow the idea and found that residual
Fourier amplitude spectrum, namely the difference between
the original Fourier amplitude spectrum and its smoothed
version, can be used to form a saliency map. In comparison,
the recently proposed image signature model discards the
whole amplitude information and just retains the sign of each
discrete cosine transform component. In other words, this

model just requires a single bit per component, making it
very compact. Specifically, the image signature is defined as

Image Signature(Ii ) = sign(DCT2(Ii )) (10)

where sign (·) is used to obtain the sign, and then the
reconstructed image is derived by

Ī = IDCT2(Image Signature(Ii )) (11)

where DCT2 and IDCT2, respectively, stand for discrete
cosine and inverse discrete cosine transforms for 2-D signals.
In the end, we can get the saliency map by smoothing the
squared reconstructed image

Saliency Map = g ∗ ( Ī ◦ Ī ) (12)

where g is a Gaussian kernel, and ◦ and ∗ are the entrywise
and convolution product operators, respectively. An example
in Fig. 4(a2) shows the high accuracy of the image signature
model in saliency detection.
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Fig. 10. Natural image Motocross bikes in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output of
RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

Fig. 11. Natural image Mountain chalet in Kodak database and the outputs. (a) Original image. (b) Output of HE. (c) Output of DSIHE [3]. (d) Output of
RSIHE [5]. (e) Output of WTHE [6]. (f) Output of HMF [13]. (g) Output of OCTM [15]. (h) Output of our RICE.

Based on the aforementioned image signature model,
we define a distance metric of the input image Ii and its
contrast-changed version Ic using the �0 distance (i.e., the
Hamming distance) of their image signatures as the first term
of QMC

	D = ‖sign(DCT2( İi )), sign(DCT2( İc))‖0 (13)

where İi and İc are downsampled images of Ii and Ic by a
factor of 4 using the bilateral method. This term means that the
smaller the difference of saliency maps between Ii and Ic is,
the higher the quality score of Ic will be.

The second term of QMC comes from [34]. Information
entropy is an important concept in statistics [35]. It measures
the information amount for a random image signal by quantify-
ing its average unpredictability. In most cases, a high-contrast
image is of large entropy, which enlightens us to define
the second term as 	E = E(Ii ) − E(Ic). Of course, other

advanced metrics, such as the Kullback–Leibler divergence
and its modified symmetric Jensen–Shannon divergence [36],
can be also considered, e.g., QA models [37], [38], while it
was found that they do not lead to performance improvement
and yet cause much higher complexity.

In this paper, we combine saliency preservation and entropy
increment together with a simple linear function to derive the
QMC as

QMC(Ii , Ic) = 	D + γ	E (14)

where γ is a fixed parameter to adjust the relative importance
of two components. We find the optimal value of γ to be
0.2, which represents that saliency preservation has a more
important role in the QA of contrast enhancement. It is noted
that our QMC is a reduced-reference (RR) QA metric, because
it only needs one single number E(Ii ) and a small binary map
sign(DCT2( İi )) of 1/16th original image resolution.
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TABLE III

OVERALL SUBJECTIVE QUALITY SCORES OF THE ORIGINAL IMAGE AND

EACH OF ENHANCED VERSIONS WITH CONTRAST ENHANCEMENT

ALGORITHMS TESTED ON THE KODAK IMAGE DATABASE.

WE BOLD THE TOP ENHANCEMENT METHOD

IN EACH IMAGE SET

For the QMC to be a practical method, it must have high
accuracy and low computational cost. We test the performance
of QMC and compare it with state-of-the-art QA metrics on
the recent contrast-changed image database (CID2013) [34],
which is composed of 15 natural images of size 768 × 512
from the Kodak database [19] and totally 400 contrast-changed
version and associated mean opinion scores (MOSs) obtained
from 22 inexperienced observers. Most of the viewers were
college students with different majors. They include 15 males
and 7 females. All testing images can be classified into
two groups. The first one is generated by mean shifting natural
images with positive or negative numbers that have six levels
of {20, 40, 60, 80, 100, 120}, and the second group of contrast-
changed images is created with four kinds of transfer mapping
curves, i.e., concave arc, convex arc, cubic function, and
logistic function. The six testing QA methods are given
below.

1) Full-reference (FR) QA algorithms assuming that
both original and distorted images are wholly known:
a) feature similarity (FSIM) index [20], which is inspired
by the fact that the human visual system understands
an image mainly relying on low-level features, and
uses the complementary phase congruency [39] and
gradient magnitude [40] to characterize the image
quality; b) gradient similarity (GSIM) index [21],
measuring the changes of GSIM in contrast and
structure in images; c) internal generative mechanism
(IGM) [22], fusing modified PSNR and structural
similarity [41] values computed on predicted and
disorderly regions with psychophysical parameters [42];

TABLE IV

SIMILARITY EVALUATIONS BETWEEN SALIENCY MAPS IN EACH OF

TESTING IMAGE SUBSETS. WE HIGHLIGHT THE BEST PERFORMED

ENHANCEMENT METHOD IN EACH IMAGE SET, AND LABEL

THE LOWEST SCORE WITH BRACKETS IN

EACH ALGORITHM

and d) SSIM weighted [23], estimating weights in a
block-based manner for improving SSIM.

2) RR QA metrics: a) free energy based distortion
metric (FEDM) [24], quantifying the psychovisual
quality as the agreement between an input image and
its output of the internal generative model based on the
recent free-energy theory [43], which explains some
brain theories in biological and physical sciences about
human action, perception, and learning; b) structural
degradation model (SDM) [25], which succeeded in
improving the FR SSIM [41] into RR QA according
to an observation that, for most images with various
distortion types and quality levels, their low-pass filtered
versions have different spatial frequency decrease; and
c) RR image quality metric for contrast change
(RIQMC) [34], which depends on the information
residual between the input and distorted images as well
as the first four-order statistics of the distorted image
histogram.

As suggested by the Video Quality Experts
Group (VQEG) [44], we compare the proposed QMC
with the testing QA metrics via Spearman rank-order
correlation coefficient (SROCC), which is one of the most
popular performance measures and has been widely used to
find the suitable parameters in several existing QA metrics
such as [45]–[47]. The SROCC is defined by

SROCC = 1 −
6

R∑
i=1

r2
i

R(R2 − 1)
(15)
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where ri represents the distinction between the i th image’s
ranks in subjective and quality objective scores, and R stands
for the image number in the testing database. SROCC is a
nonparametric rank-based correlation measure, independent of
any monotonic linear/nonlinear mapping between subjective
and objective evaluations. A value close to 1 for SROCC
indicates superior performance of the QA model.

We provide the performance indices of the competing
QA metrics in Table I. It is clear that the proposed QMC model
has achieved substantially high performance, much better
than state-of-the-art FR and RR QA algorithms. Furthermore,
our QMC needs very little average run time as compared with
the testing methods, as listed in Table I. We then calculate
SROCC on each original image (the CID2013 database
includes 15 natural images) and associated contrast-changed
versions, and report those performance measures in Table II.
Our approach also obtains very high and stable results: all of
SROCC values are higher than 0.927. In Fig. 5, we display
the scatter plot of QMC on the overall CID2013 database to
show the good monotonicity.

As QMC turns out to be an effective quality metric for
contrast-changed images, we in this paper utilize QMC to
optimize the parameters {φ,ψ} for the contrast enhancement
algorithm as

{φopt, ψopt}
= arg min{φ,ψ} QMC(Ii , Ĩ )

= arg min{φ,ψ} QMC

(
Ii , Thm

(
Ii ,

hi + φheq + ψhsig

1 + φ + ψ

))
.

(16)

In this way, the algorithm can automatically obtain the prop-
erly enhanced image Iopt with {φopt, ψopt} and histogram
matching in (9). Note that, as indicated in Fig. 5, the smaller
the QMC value, the better the visual quality.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Based on the analysis in previous sections, we can quantify
the performance of an image contrast enhancement algorithm
in the following three aspects: 1) subjective quality; 2) saliency
preservation; and 3) computational complexity. We first select
24 natural images from the Kodak image database [19].
The testing images have a wide range of contents, such as
humans and animals, and indoor and outdoor scenes. We then
choose six contrast enhancement techniques for comparison,
which include the classical HE and its modified DSIHE [3],
RSIHE [5], WTHE [6], as well as state-of-the-art HMF [13]
and OCTM [15].

A. Subjective Quality

As shown in Fig. 4(d1)–(f1), we have found a way to gen-
erate a more visually informative and perceptually pleasing as
well as less visually disturbing image via finding a good com-
promise among the original image and its histogram equalized
and STBP transferred copies. The enhanced output by STBP
indeed stretches the original image histogram to both sides,
and thus increases the image contrast. Next, we propose the

QMC (a high-performance quality metric for contrast change)
and use it to automatically acquire appropriate parameters
and create associated optimal enhanced products. As shown
in Figs. 6–11(h), the output images are of suitable luminance,
hue, and tone, and do not introduce artifacts and noise.
Furthermore, in these enhanced outputs, the foggy appearance
has been removed and the images are more vivid and clear.

HE and its variants DSIHE and RSIHE work ineffectively
because they usually generate too-bright or too-dark regions
[Figs. 7, 9, and 10(b)–(d)]. In addition, they also sometimes
introduce disturbing artifacts/noise [Fig. 6(b)–(d)]. Due to
the weighting and thresholding on HE, WTHE reduces the
unfavorable effect of HE. However, WTHE still encounters
the problem of overbrightness, e.g., in Fig. 10(e) or overdark,
e.g., in Fig. 9(e), and may even cause noticeable artifacts,
e.g., in Fig. 6(e). The recently developed HMF searches for
the good tradeoff of the input image and its HE product, and
this lessens the disadvantage of HE to some extent. As shown
in Fig. 6(f), HMF cannot always guarantee a balance between
visual quality and artifacts prevention. Another state-of-the-art
algorithm, OCTM, although solves the problem of overen-
hancement or less enhancement, as shown in Figs. 6–11(g),
the enhanced images look pale and somewhat unnatural.

In addition, we also conduct a subjective experiment
for quantitative perceptual quality measurements. In this
experiment, we invited a total of 20 viewers to score the
overall enhanced images. The subjects participating in this
test includes 15 males and 5 females. To make the subjective
ratings more faithful, the popular paired comparison method
is used to rank each pair of the wholly 192 images, which
consists of 24 original images and associated 168 images
generated by seven contrast enhancement technologies.
An elaborately designed interactive system reduces the
process of scoring to alternatively pressing two adjacent
keys (left is better or right is better). We tabulate the overall
score for each enhanced image in Table III. Note that higher
score indicates better performance. According to the mean
subjective rating score, we find that our RICE model is
much superior to other algorithms tested. For each image set,
the proposed RICE technique has also obtained outstanding
results by winning the first place on 17 image sets, far
beyond the WTHE and OCTM, which only win three times,
respectively.

B. Saliency Preservation

We have argued that saliency preservation can effectively
be used to avoid overenhancement and underenhancement.
To further validate this assumption, a couple of objective and
subjective experiments are implemented to compare contrast
enhancement results; that is to evaluate how well the enhanced
output preserves the original visual saliency.

In the objective test, we apply a new fast similarity
metric [48]. We denote by SMi and SMe the normalized
saliency maps of the input image and the enhanced output that
is computed by the state-of-the-art saliency detection model
in [18]. The similarity is the sum of the minimum values at
each point in the two normalized maps, and is mathematically
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TABLE V

SIMILARITY EVALUATION OF SALIENCY MAPS OF THE ORIGINAL AND

ENHANCED IMAGES IN EACH TESTING DATA SET. WE EMPHASIZE

THE TOP ENHANCEMENT METHOD IN EACH IMAGE SET WITH

BOLDFACE, AND LABEL THE LOWEST SCORE WITH

BRACKETS IN EACH ALGORITHM

defined as

Similarity =
L∑

l=1

min(SMi (l),SMe(l)) (17)

where
L∑

l=1

SMi (l) =
L∑

l=1

SMe(l) = 1 (18)

with L being the image pixel number. Note that a similarity
score of one indicates that the two saliency maps are the same,
whereas that of zero indicates that they do not overlap at all,
namely totally opposite. In other words, a value close to 1
indicates high performance.

In Table IV, we report the similarity measures of the testing
contrast enhancement approaches on the overall 24 images
in the Kodak database. As expected, the proposed RICE
achieves the best result in 16 images, up to 67% of all
the test scenarios. Not surprisingly, our RICE also acquires
the highest similarity score on average, outperforming other
testing methods. In practice, for those contrast enhancement
algorithms under comparison, we can roughly come to an
agreement of subjective assessment results on average: HE <
DSIHE ≤ RSHIE ≤ WTHE < HMF < OCTM < RICE.
This is almost the same with the average objective measure
in Table IV, except for DSIHE, RSIHE, and WTHE, which
have very close enhancement effects. Furthermore, we want
to emphasize that the proposed RICE algorithm is also robust
across various image scenes since its similarity evaluation
for each image is larger than 0.932, whereas the others have

Fig. 12. Exemplary saliency maps obtained from (a) original image and
enhanced counterparts that are created by (b) HE, (c) DSIHE, (d) RSIHE,
(e) WTHE, (f) HMF, (g) OCTM, and the proposed (h) RICE models shown
in Fig. 9 using the subjective eye-tracking test.

Fig. 13. Scatter plot of the optimal φ and ψ computed on 200 images
from the Berkeley database [49]. The red dash line is fitted using the least
square method on (20). The colored points are three clusters using k-means
clustering [50].

comparatively much lower scores, for instance, HE: 0.824,
DSIHE: 0.848, RSIHE: 0.862, WTHE: 0.847, HMF: 0.903,
and OCTM: 0.930, as labeled with brackets in Table IV.

An eye-tracking experiment for saliency preservation is also
conducted using the Tobbi T120 Eye Tracker. Tobbi T120 is
integrated into a 17-in thin-film transistor monitor to make
the user experience as natural as possible and it has sample
frequency of up to 120 Hz. The monitor has a resolution
of 1280 × 1024 pixels. It has a spatial resolution of 0.3◦
with a typical accuracy of 0.5◦. The head movement box of
Tobbi T120 (width × hight) is 30 × 22 cm at 70 cm, and the
suitable viewing distance is 50–80 cm. During the test, each
subject was asked to look freely at the entire 192 images used
in the aforementioned subjective QA shown on the monitor.
After the acquirement of the fixation data, we generated the
saliency maps with the fixation location according to [26].
A 2-D Gaussian mask is used to generate the final saliency
map

SM(k, l) =
T∑

i=1

exp

[
− (xi − k)2 + (yi − l)2

σ 2

]
(19)

where SM(k, l) indicates the saliency map of the input visual
stimulus. k ∈ [1,M] and l ∈ [1, N] with M and N being the
image height and width. (xi , yi ) is the spatial coordinate of the
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Fig. 14. Enhanced video frames in four representative video sequences in the VQEG database [44] and the corresponding outputs. (a1)–(a4) Original frame.
(b1)–(b4) HE. (c1)–(c4) DSIHE [3]. (d1)–(d4) RSIHE [5]. (e1)–(e4) WTHE [6]. (f1)–(f4) HMF [13]. (g1)–(g4) Proposed RICE. We label some remarkable
regions with colored rectangles for comparison.

i th fixation (i = 1, . . . , T ) with T being the total number of all
fixations over all subjects. σ indicates the standard deviation of
the Gaussian kernel. We linearly normalize the intensity of the
resulting saliency maps to the range [0, 1]. Fig. 12 shows some
exemplary saliency maps obtained from this subjective test.
In Fig. 12(a)–(h), the saliency maps come from the original
image and enhanced versions created by HE, DSIHE, RSIHE,
WTHE, HMF, OCTM, and the proposed RICE algorithms.
It can be readily viewed that the saliency map of our RICE is
more similar to that of the original image, as compared with
other contrast enhancement approaches.

Using the fast similarity metric introduced above, we further
quantify the similarity degree, as shown in Table V. The
proposed model has achieved the best average performance
among all the contrast enhancement technologies tested.
We find that our RICE wins as much as 19× the first place,
up to around 80%. It also needs to stress that the similarity
result of RICE on each image subset is higher than 0.7, and
even larger than 0.8 on 20 sets, over 83%. The above results
and comparisons indicate the good saliency preservation
ability of the proposed technique.

C. Computational Complexity

This section will discuss and compare the computational
complexities of the proposed RICE and those testing methods
for an image of size W × H and B bins, following the
method in [13]. For HE, the computation of the histogram
requires O(W H ) time, calculating the mapping function from
the histogram requires O(2B) time, and finally obtaining the
enhanced image with the mapping function requires O(W H )
time. Hence, its total time complexity is O(2W H + 2B).

For DSIHE, RSIHE, WTHE, and HMF, the computation
of the histogram requires O(W H ) time, that of the modified
histogram for each bin requires O(2B) time, and that of the
mapping function requires O(2B) time. In summary, those
methods totally requires O(2W H + 2B+1) time to create an
enhanced image. For OCTM, it needs a great amount of run
time since linear programming is used to solve a complicated
optimization function.

For a fair comparison, this paper estimates the
computational complexity of the proposed RICE without
the automatic optimization step. Note that the solutions of
�mean(Ii )/32� ∗ 32 are limited, so we can first solve the
optimization problem in (3), compute the associated sigmoid
transfer mappings offline, and store them in a lookup table
to speed up the RICE algorithm. Consequently, the total time
complexity of RICE is also O(2W H + 2B+1).

To further reduce the computational load, we first acquire
optimal {φ,ψ} values on 200 random images from the
Berkeley database [49] in Fig. 13(a). Based on an observation
that there exists an approximate linear relationship of the
optimal φ and ψ values, we then fit the linear regression model

ψ = s · φ + t (20)

where s and t are acquired using the least square method, and
their estimated values are 1982 and 3.012. In this way, we can
remarkably decrease the computational complexity of the pro-
posed technique. Moreover, we apply k-means clustering [50]
to find three clusters, as labeled in Fig. 13, and this can further
save the computational time of our algorithm by enumerating
the three possibilities and choosing the best one. According
to the above analysis, the proposed RICE model is shown to
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TABLE VI

SIMILARITY EVALUATIONS OF SALIENCY MAPS IN EACH SUBSETS IN

THE VQEG DATABASE. WE BOLD THE TOP ENHANCEMENT

METHOD IN EACH SET, AND LABEL THE LOWEST

SCORE WITH BRACKETS IN EACH MODEL

be not only of low computational complexity but also of high
flexibility in reducing the computational complexity.

IV. EXTENSION TO VIDEO ENHANCEMENT

Besides image enhancement, the proposed technique can
also be extended to video enhancement. Early researchers
emphasized the significance of brightness preservation [2]–[5].
However, as shown in Figs. 6–11(b)–(d), those enhancement
approaches cannot always create delighting outputs due to
the introduction of visually disturbing artifacts. Brightness
preservation is more important for videos than for images,
because the brightness deviation usually generates temporal
flickering artifacts, which are commonly seen in enhanced
video sequences processed by HE-based techniques. As a
result, we adopt the median brightness preservation for video
streams owing to its simpleness and acquirement of maximum
entropy [3], and then we rewrite (8) by replacing heq by hdsihe
that is calculated with DSHIE

h̃ = hi + φhdsihe + ψhsig

1 + φ + ψ
. (21)

Since hi, hdsihe, and hsig almost have the same median
brightness value, their weighted combination h̃ has the
equivalent median brightness as well. In this way, we succeed
in keeping brightness when enhancing video sequences.

Another common problem in video technology is the
efficiency. To solve this, an entropy-inspired model is applied.
More precisely, at the beginning of the process, we utilize the
RICE to generate a mapping curve of the first video frame,
and store this mapping curve. For subsequent video frames,
the entropy model is used to compute the differences of the
information content between two successive frames, which

TABLE VII

COMPARISON OF THE MEDIAN BRIGHTNESS ON 20 VIDEO SEQUENCES IN

THE VQEG DATABASE. WE EMPHASIZE THE METHOD THAT HAS THE

CLOSEST MEDIAN BRIGHTNESS TO THE ORIGINAL VERSION

can be approximated as

E = −
255∑
i=0

pi log(pi) (22)

where pi is the probability density at the i th pixel. When the
absolute difference of E between the current and previous
frames exceeds the threshold T , the transfer mapping curve
will be updated. Otherwise, the existing mapping curve stored
is immediately applied to transform each intensity level in
the incoming video frame.

We exhibit enhanced video frames from four representative
video scenes in Fig. 14 and label some important regions
with colored rectangles for comparison. The HE and its
related DSIHE, RSIHE, and WTHE methods still suffer from
those above-mentioned drawbacks, e.g., generating too-bright
or too-dark outputs or introducing noise and temporal
flickering artifacts. Although HMF performs somewhat
well, it sometimes causes artifacts, e.g., in Fig. 14(f1)–(f3),
or renders the results unnatural, e.g., in Fig. 14(f4). The
RICE technique produces properly enhanced images, not
only highlighting indiscernible details but also preventing
noticeable artifacts, as can be observed in Fig. 14(g1)–(g4).

We also measure saliency preservation on the VQEG video
database, and list the results in Table VI. The RICE algorithm
has achieved the best performance in 95% video sequences,
and outperforms other contrast enhancement algorithms with
seizable margins. The robustness of RICE is good as well, with
each of the similarity scores greater than 0.9622. In contrast,
as labeled with brackets in Table VI, other methods have
poor similarity scores, e.g., HE: 0.8311, DSIHE: 0.8737,
RSIHE: 0.8756, WTHE: 0.9125, and HMF: 0.8256.

Video contrast enhancement requires keeping brightness,
because a small amount of luminance fluctuations will produce
intensively flickering artifacts, and thus seriously degrades
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the perceptual quality. In addition, a video sequence perhaps
involves different scenes, e.g., daylight seaside and dark-night
seabed. In these conditions, most existing contrast enhance-
ment technologies tend to generate gloomy seaside and bright
seabed, violating the common sense. The proposed RICE
can guarantee the original brightness well preserved and thus
avoid temporal artifacts. We report in Table VII the median
brightness of the competing approaches, and highlight the
method that has the closest median brightness to the original
one. Clearly, the proposed RICE achieves outstanding results,
and outperforms all other methods for 85% video sequences.

V. CONCLUSION

In this paper, we have proposed a new RICE technology.
We comprehensively consider the properties of visual infor-
mativeness, perceptual deterioration, and visual pleasantness.
We then design a general framework to combine the constr-
aints from the original image and its histogram equalized
and sigmoid mapping transferred versions to get the properly
enhanced images. To address the problems of overenhance-
ment and underenhancement, which are faced by most existing
contrast enhancement methods, we design an efficient and
effective QMC for image contrast based on the concept of
saliency preservation. QMC also helps to optimize the model
parameters used in the RICE algorithm so as to guarantee the
optimal outputs. We have tested the performance of the RICE
model with many existing enhancement algorithms, such as
HE and its variants DSIHE, RSIHE, WTHE, and state-of-the-
art HMF and OCTM, in terms of subjective quality, saliency
preservation, and computational complexity. The experimental
results prove the superiority of the proposed model. MATLAB
codes will be released online at http://multimedia.sjtu.edu.cn/.
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